organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(acetophenone oxime) O,O'-methylene ether

Yong Zhang, Hong-Jun Zang,* Bo-Wen Cheng and Jun Song

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China Correspondence e-mail: chemhong@126.com

Received 18 November 2008; accepted 20 November 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.097; data-to-parameter ratio = 13.5.

In the molecule of the title compound, $C_{17}H_{18}N_2O_2$, the dihedral angle between the aromatic rings is 74.26 (3)°. The oxime units are oriented at dihedral angles of 7.66 (3) and 33.06 (3)° with respect to the adjacent rings, and they have *E* configurations about the C=N bonds.

Related literature

For general background on oximes and their varied applications, see: Jones *et al.* (1961); Schrauzer & Kohnle (1964); Hashemi *et al.* (2006); Ghiasvand *et al.* (2004, 2005); Kakanejadifard *et al.* (2007); Otsuka Pharmaceutical Co Ltd (1981); Chertanova *et al.* (1994).

Experimental

Crystal data $C_{17}H_{18}N_2O_2$ $M_r = 282.33$

Monoclinic, $P2_1/n$ a = 9.875 (2) Å

```
b = 8.8409 (18) \text{ Å}

c = 17.290 (4) \text{ Å}

\beta = 101.13 (3)^{\circ}

V = 1481.1 (6) \text{ Å}^{3}

Z = 4
```

Data collection

```
Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
T_{min} = 0.988, T_{max} = 0.997
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 193 parameters $wR(F^2) = 0.097$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ 2612 reflections $\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.14 \times 0.04 \times 0.04$ mm

9665 measured reflections

2612 independent reflections

1724 reflections with $I > 2\sigma(I)$

T = 113 (2) K

 $R_{\rm int} = 0.104$

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Tianjin Natural Science Foundation (grant No. 07JCYBJC02200) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2580).

References

- Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.
- Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). *Talanta*, **62**, 287–292.
- Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781–785.
- Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). *Anal. Sci.* **21**, 1297–1301.
- Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62–66.
- Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753–2756.

Otsuka Pharmaceutical Co Ltd (1981). Jpn Kokai Tokyo Koho JP, 81 108 757. Rigaku/MSC (2005). *CrystalClear*. Rigaku/MSC, The Woodlands, Texas, USA. Schrauzer, G. N. & Kohnle, J. (1964). *Chem. Ber.* 97, 3056–3063.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o2452 [doi:10.1107/S160053680803897X]

Bis(acetophenone oxime) 0,0'-methylene ether

Y. Zhang, H.-J. Zang, B.-W. Cheng and J. Song

Comment

Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones *et al.*, 1961; Schrauzer & Kohnle, 1964; Hashemi *et al.*, 2006; Ghiasvand *et al.*, 2004; Ghiasvand *et al.*, 2005; Kakanejadifard *et al.*, 2007). Methylene dioximes are important chemicals useful as metal capturers, and antiinflammatory and antibacterial agents (Otsuka Pharmaceutical Co Ltd, 1981). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges. Rings A (C1-C6) and B (C12-C17) are, of course, planar, and they are oriented at a dihedral angle of 74.26 (3)°. The (C1-C7-N1-O1) and (C12/C10/N2/O2) moleties are oriented with respect to the adjacent rings at dihedral angles of 7.66 (3)° and 33.06 (3)°, respectively. The oxime moleties have E configurations [C1-C7-N1-O1 178.38 (12)° and C12-C10-N2-O2 179.02 (10)°; Chertanova *et al.*, 1994].

Experimental

For the preparation of the title compound, the acetophenone oxime (0.5 mmol) was dissolved in dichloromethane (3.5 ml). [bmim]BF₄ (0.2269 g, 0.1 mmol) and sodium hydroxide (0.167 g) were added. The reaction mixture was stirred at room temperature for 30 min. The mixture was washed with water (10 ml) and extracted with CH_2Cl_2 (15 ml). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to dryness *in vacuo*. The product was purified by chromatography on silica (200–300 mesh). Elution with a mixture of petroleum ether and ethyl acetate [1/20(v/v)] afforded the methylene dioxime. Crystals suitable for X-ray analysis were obtained by slow evaporation of a water solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å, respectively for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Bis(acetophenone oxime) O,O'-methylene ether

Crystal data

$C_{17}H_{18}N_2O_2$	$F_{000} = 600$
$M_r = 282.33$	$D_{\rm x} = 1.266 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2756 reflections
a = 9.875 (2) Å	$\theta = 2.4 - 27.5^{\circ}$
b = 8.8409 (18) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.290 (4) Å	T = 113 (2) K
$\beta = 101.13 \ (3)^{\circ}$	Prism, colorless
V = 1481.1 (6) Å ³	$0.14 \times 0.04 \times 0.04 \ mm$
Z = 4	

Data collection

Rigaku Saturn diffractometer	2612 independent reflections
Radiation source: rotating anode	1724 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.105$
T = 113(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$h = -11 \rightarrow 11$
$T_{\min} = 0.988, \ T_{\max} = 0.997$	$k = -9 \rightarrow 10$
9665 measured reflections	$l = -20 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0345P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.96	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
2612 reflections	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
193 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.016 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.36208 (10) 0.0284(3)0.65077 (13) 0.02442 (6) O2 0.14145 (11) 0.61984 (13) 0.05282 (6) 0.0284 (4) N1 0.0270 (4) 0.39081 (13) 0.79925 (17) 0.05526(7) N2 0.15155 (13) 0.46386 (16) 0.07470 (8) 0.0257(4)C1 0.55638 (16) 0.9740(2) 0.11238 (8) 0.0247 (4) C2 0.45724 (17) 1.0888(2)0.10304(9)0.0274(5)H2 1.0676 0.0774 0.033* 0.3675 C3 0.48996 (17) 1.2324 (2) 0.13110 (9) 0.0315 (5) H3 0.4223 0.1246 0.038* 1.3070 C4 0.62333 (18) 1.2665 (2) 0.16904 (9) 0.0357 (5) 0.043* H4 0.6457 1.3636 0.1879 C5 0.72255 (18) 1.1545 (2) 0.17853 (10) 0.0360 (5) Н5 0.043* 0.8121 1.1765 0.2041 C6 0.69013 (17) 1.0102 (2) 0.15045 (9) 0.0328 (5) 0.039* H6 0.7583 0.9362 0.1570 0.0251 (4) C7 0.52021 (16) 0.8199 (2) 0.08160 (9) C8 0.62975 (17) 0.7028 (2) 0.08213 (10) 0.0362 (5) H8A 0.5891 0.054* 0.6128 0.0565 H8B 0.6721 0.6797 0.1356 0.054* H8C 0.7408 0.054* 0.6983 0.0546 C9 0.21947 (16) 0.6427 (2) -0.00642(9)0.0283 (5) H9A 0.2020 0.5603 -0.04410.034* H9B 0.1899 0.7358 -0.03430.034* C10 0.09103 (15) 0.0231 (4) 0.4381 (2) 0.13271 (9) C11 0.02188 (17) 0.5564 (2) 0.17390 (10) 0.0329 (5) H11A 0.0883 0.6006 0.2157 0.049* H11B -0.05090.5107 0.1954 0.049* H11C 0.6337 0.049* -0.01590.1369 C12 0.09387 (15) 0.2791 (2) 0.15882 (9) 0.0241 (4) C13 0.09137 (16) 0.1598 (2) 0.10568 (9) 0.0278 (5) H13 0.0876 0.1804 0.0526 0.033* C14 0.09444 (16) 0.0116(2) 0.13108 (10) 0.0324(5)0.039* H14 0.0931 -0.06700.0952

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C15	0.09958 (16)	-0.0200 (2)	0.20996 (10)	0.0327 (5)
H15	0.1010	-0.1199	0.2269	0.039*
C16	0.10255 (16)	0.0964 (2)	0.26369 (10)	0.0303 (5)
H16	0.1065	0.0751	0.3167	0.036*
C17	0.09954 (15)	0.2444 (2)	0.23818 (9)	0.0265 (5)
H17	0.1013	0.3224	0.2744	0.032*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0275 (7)	0.0271 (9)	0.0310 (7)	0.0022 (6)	0.0069 (5)	-0.0017 (5)
02	0.0292 (7)	0.0262 (9)	0.0310 (7)	0.0010 (6)	0.0085 (5)	0.0017 (5)
N1	0.0287 (8)	0.0268 (10)	0.0262 (8)	0.0008 (7)	0.0071 (6)	0.0000 (6)
N2	0.0248 (8)	0.0211 (10)	0.0305 (8)	-0.0004 (7)	0.0031 (6)	0.0003 (7)
C1	0.0231 (9)	0.0314 (13)	0.0209 (9)	0.0014 (9)	0.0073 (7)	0.0047 (8)
C2	0.0244 (9)	0.0333 (13)	0.0246 (9)	-0.0004 (9)	0.0050 (7)	-0.0009 (8)
C3	0.0325 (10)	0.0335 (14)	0.0296 (10)	0.0025 (9)	0.0085 (8)	0.0005 (8)
C4	0.0412 (12)	0.0374 (14)	0.0286 (10)	-0.0098 (10)	0.0073 (8)	0.0012 (9)
C5	0.0265 (10)	0.0471 (16)	0.0328 (11)	-0.0084 (10)	0.0018 (8)	0.0047 (9)
C6	0.0252 (10)	0.0420 (15)	0.0317 (10)	0.0013 (9)	0.0070 (7)	0.0069 (9)
C7	0.0250 (9)	0.0308 (12)	0.0205 (9)	0.0053 (8)	0.0068 (7)	0.0052 (8)
C8	0.0293 (10)	0.0370 (14)	0.0416 (11)	0.0072 (9)	0.0051 (8)	0.0005 (9)
C9	0.0278 (10)	0.0332 (13)	0.0236 (10)	-0.0026 (8)	0.0044 (8)	0.0017 (8)
C10	0.0173 (9)	0.0276 (12)	0.0237 (9)	-0.0008 (8)	0.0024 (7)	-0.0040 (8)
C11	0.0334 (10)	0.0299 (13)	0.0369 (10)	0.0031 (9)	0.0100 (8)	-0.0027 (8)
C12	0.0167 (9)	0.0258 (12)	0.0294 (10)	-0.0002 (8)	0.0038 (7)	-0.0014 (8)
C13	0.0255 (10)	0.0300 (14)	0.0288 (10)	-0.0012 (9)	0.0075 (7)	-0.0028 (8)
C14	0.0301 (10)	0.0265 (13)	0.0411 (11)	0.0014 (9)	0.0082 (8)	-0.0058 (9)
C15	0.0252 (10)	0.0278 (13)	0.0440 (11)	0.0011 (9)	0.0037 (8)	0.0050 (9)
C16	0.0254 (10)	0.0332 (14)	0.0310 (10)	-0.0004 (9)	0.0023 (8)	0.0044 (9)
C17	0.0203 (9)	0.0278 (13)	0.0309 (10)	-0.0008(8)	0.0041 (7)	-0.0059 (8)

Geometric parameters (Å, °)

O1—C9	1.4081 (17)	C8—H8B	0.9600
O1—N1	1.4246 (17)	C8—H8C	0.9600
O2—C9	1.4100 (19)	С9—Н9А	0.9700
O2—N2	1.4283 (17)	С9—Н9В	0.9700
N1—C7	1.2842 (19)	C10-C12	1.476 (2)
N2	1.283 (2)	C10-C11	1.502 (2)
C1—C6	1.394 (2)	C11—H11A	0.9600
C1—C2	1.397 (2)	C11—H11B	0.9600
C1—C7	1.481 (2)	C11—H11C	0.9600
C2—C3	1.375 (2)	C12—C13	1.396 (2)
С2—Н2	0.9300	C12—C17	1.397 (2)
C3—C4	1.386 (2)	C13—C14	1.381 (2)
С3—Н3	0.9300	С13—Н13	0.9300
C4—C5	1.380 (2)	C14—C15	1.383 (2)
C4—H4	0.9300	C14—H14	0.9300

C5—C6	1.381 (2)	C15—C16	1.383 (2)
С5—Н5	0.9300	C15—H15	0.9300
С6—Н6	0.9300	C16—C17	1.379 (2)
С7—С8	1.496 (2)	С16—Н16	0.9300
С8—Н8А	0.9600	С17—Н17	0.9300
C9—O1—N1	107.51 (12)	О1—С9—Н9А	109.1
C9—O2—N2	108.10 (12)	О2—С9—Н9А	109.1
C7—N1—O1	112.12 (13)	O1—C9—H9B	109.1
C10—N2—O2	111.03 (14)	О2—С9—Н9В	109.1
C6—C1—C2	117.83 (17)	Н9А—С9—Н9В	107.9
C6—C1—C7	121 41 (15)	N2-C10-C12	115.07 (16)
C_{2} — C_{1} — C_{7}	120 75 (14)	N2-C10-C11	124 78 (17)
C_{3} $-C_{2}$ $-C_{1}$	121.18 (15)	C_{12} C_{10} C_{11}	120.15(16)
C_{3} C_{2} H_{2}	119.4	C10-C11-H11A	109 5
C1_C2_H2	119.1	C10-C11-H11B	109.5
$C_1 = C_2 = C_1^2$	117.4		109.5
$C_2 = C_3 = C_4$	110.9		109.5
$C_2 = C_3 = H_3$	119.0		109.5
C4—C3—H3	119.8		109.5
C_{3}	119.23 (18)		109.5
C5—C4—H4	120.4	C13 - C12 - C17	118.25 (17)
C3—C4—H4	120.4	C13-C12-C10	121.45 (16)
C4—C5—C6	120.65 (16)	C17—C12—C10	120.30 (15)
C4—C5—H5	119.7	C14—C13—C12	120.74 (16)
С6—С5—Н5	119.7	C14—C13—H13	119.6
C5—C6—C1	120.80 (17)	C12—C13—H13	119.6
С5—С6—Н6	119.6	C13—C14—C15	119.97 (17)
С1—С6—Н6	119.6	C13—C14—H14	120.0
N1—C7—C1	114.38 (15)	C15-C14-H14	120.0
N1—C7—C8	124.93 (16)	C16-C15-C14	120.26 (18)
C1—C7—C8	120.69 (14)	С16—С15—Н15	119.9
С7—С8—Н8А	109.5	C14—C15—H15	119.9
С7—С8—Н8В	109.5	C17—C16—C15	119.67 (17)
H8A—C8—H8B	109.5	C17—C16—H16	120.2
С7—С8—Н8С	109.5	C15-C16-H16	120.2
H8A—C8—H8C	109.5	C16—C17—C12	121.11 (16)
H8B—C8—H8C	109.5	С16—С17—Н17	119.4
01—C9—O2	112.27 (12)	C12—C17—H17	119.4
C9—O1—N1—C7	-176.97 (13)	N1—O1—C9—O2	-79.77 (15)
C9—O2—N2—C10	175.14 (11)	N2-02-C9-01	-78.02 (14)
C6—C1—C2—C3	-0.6 (2)	O2—N2—C10—C12	179.02 (10)
C7—C1—C2—C3	-179.71 (15)	O2—N2—C10—C11	-1.56 (19)
C1—C2—C3—C4	0.4 (3)	N2-C10-C12-C13	-32.7(2)
$C_2 - C_3 - C_4 - C_5$	-0.2(3)	$C_{11} - C_{10} - C_{12} - C_{13}$	147.83 (15)
C_{3} C_{4} C_{5} C_{6}	0.2(3)	N_{2} C10 C12 C17	147 12 (15)
C4-C5-C6-C1	-0.4(3)	C_{11} C_{10} C_{12} C_{17}	-32.3(2)
$C^{2}-C^{1}-C^{2}-C^{5}$	0.6.(2)	C_{17} C_{12} C_{13} C_{14}	0.0(2)
C7-C1-C6-C5	179 70 (16)	C_{10} C_{12} C_{13} C_{14}	179.83 (14)
01 - N1 - C7 - C1	178 38 (12)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{15}$	(17)(0)(17)
	170.30 (12)	012-013-014-013	0.2 (2)

supplementary materials

O1—N1—C7—C8	-1.2 (2)	C13—C14—C15—C16	-0.4 (2)
C6—C1—C7—N1	173.26 (15)	C14—C15—C16—C17	0.4 (2)
C2—C1—C7—N1	-7.7 (2)	C15—C16—C17—C12	-0.2 (2)
C6—C1—C7—C8	-7.1 (2)	C13—C12—C17—C16	0.0 (2)
C2—C1—C7—C8	171.95 (15)	C10-C12-C17-C16	-179.87 (14)

Fig. 1